Determination of a unique solution to parallel proton transfer reactions using the genetic algorithm.
نویسندگان
چکیده
Kinetic analysis of the dynamics as measured in multiequilibria systems is readily attained by curve-fitting methodologies, a treatment that can accurately retrace the shape of the measured signal. Still, these reconstructions are not related to the detailed mechanism of the process. In this study we subjected multiple proton transfer reactions to rigorous kinetic analysis, which consists of solving a set of coupled-nonlinear differential rate equations. The manual analysis of such systems can be biased by the operator; thus the analysis calls for impartial corroboration. What is more, there is no assurance that such a complex system has a unique solution. In this study, we used the Genetic Algorithm to investigate whether the solution of the system will converge into a single global minimum in the multidimensional parameter space. The experimental system consisted of proton transfer between four proton-binding sites with seven independent adjustable parameters. The results of the search indicate that the solution is unique and all adjustable parameters converge into a single minimum in the multidimensional parameter space, thus corroborating the accuracy of the manual analysis.
منابع مشابه
Static Task Allocation in Distributed Systems Using Parallel Genetic Algorithm
Over the past two decades, PC speeds have increased from a few instructions per second to several million instructions per second. The tremendous speed of today's networks as well as the increasing need for high-performance systems has made researchers interested in parallel and distributed computing. The rapid growth of distributed systems has led to a variety of problems. Task allocation is a...
متن کاملA New ILP Model for Identical Parallel-Machine Scheduling with Family Setup Times Minimizing the Total Weighted Flow Time by a Genetic Algorithm
This paper presents a novel, integer-linear programming (ILP) model for an identical parallel-machine scheduling problem with family setup times that minimizes the total weighted flow time (TWFT). Some researchers have addressed parallel-machine scheduling problems in the literature over the last three decades. However, the existing studies have been limited to the research of independent jobs,...
متن کاملComputational study of the intramolecular proton transfer between 6-hydroxypicolinic acid tautomeric forms and intermolecular hydrogen bonding in their dimers
This paper is a density functional theory (DFT) calculation of intramolecular proton transfer (IPT) in 6-hydroxypicolinic acid (6HPA, 6-hydroxypyridine-2-carboxylic acid) tautomeric forms. The transition state for the enol-to-keto transition is reported in the gas phase and in four different solvents. The planar and non-planar dimer forms of 6HPA keto and enol, respectively, were also studied i...
متن کاملA genetic algorithm approach for problem
In this paper, a genetic algorithm is presented for an identical parallel-machine scheduling problem with family setup time that minimizes the total weighted flow time ( ). No set-up is necessary between jobs belonging to the same family. A set-up must be scheduled when switching from the processing of family i jobs to those of another family j, i j, the duration of this set-up being the sequ...
متن کاملComparing Parallel Simulated Annealing, Parallel Vibrating Damp Optimization and Genetic Algorithm for Joint Redundancy-Availability Problems in a Series-Parallel System with Multi-State Components
In this paper, we study different methods of solving joint redundancy-availability optimization for series-parallel systems with multi-state components. We analyzed various effective factors on system availability in order to determine the optimum number and version of components in each sub-system and consider the effects of improving failure rates of each component in each sub-system and impr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 87 1 شماره
صفحات -
تاریخ انتشار 2004